Fractional Debye-Stokes-Einstein behaviour in an ultraviscous nanocolloid: glycerol and silver nanoparticles.
نویسندگان
چکیده
One of the major features of glass forming ultraviscous liquids is the decoupling between translational and orientational dynamics. This paper presents studies of this phenomenon in glycerol, an accepted molecular glass former, concentrating on the impact of two exogenic factors: high pressures (P) up to the extreme 1.5 GPa and silver (Ag) nanoparticles (NPs). The analysis is focused on the fractional Debye-Stokes-Einstein (FDSE) relationship: σ(T,P)(τ(T,P))(S) = const, linking DC electric conductivity (σ) and primary (alpha, structural) relaxation time (τα). In glycerol and its nanocolloid (glycerol + Ag NPs) at atmospheric pressure only negligible decoupling (S ∼ 1) was detected. However, in the compressed nanocolloid, a well-defined transformation (at P = 1.2 GPa) from S ∼ 1 to the very strongly decoupled dynamics (S ∼ 0.5) occurred. For comparison, in pressurized 'pure' glycerol the stretched shift from S ∼ 1 to S ∼ 0.7 took place. This paper also presents the general discussion of FDSE behavior in ultraviscous liquids, including the new link between the FDSE exponent, fragility and the apparent activation enthalpy and volume.
منابع مشابه
Fractional Stokes-Einstein and Debye-Stokes-Einstein relations in a network-forming liquid.
We study the breakdown of the Stokes-Einstein (SE) and Debye-Stokes-Einstein (DSE) relations for translational and rotational motion in a prototypical model of a network-forming liquid, the ST2 model of water. We find that the emergence of fractional SE and DSE relations at low temperature is ubiquitous in this system, with exponents that vary little over a range of distinct physical regimes. W...
متن کاملTransition from fractional to classical Stokes–Einstein behaviour in simple fluids
An optical technique for tracking single particles has been used to evaluate the particle diameter at which diffusion transitions from molecular behaviour described by the fractional Stokes-Einstein relationship to particle behaviour described by the classical Stokes-Einstein relationship. The results confirm a prior prediction from molecular dynamic simulations that there is a particle size at...
متن کاملObservation of fractional Stokes-Einstein behavior in the simplest hydrogen-bonded liquid.
Quasielastic neutron scattering has been used to investigate the single-particle dynamics of hydrogen fluoride across its entire liquid range at ambient pressure. For T>230 K, translational diffusion obeys the celebrated Stokes-Einstein relation, in agreement with nuclear magnetic resonance studies. At lower temperatures, we find significant deviations from the above behavior in the form of a p...
متن کاملThe splenocyte proliferative response and cytokine secretion in mice after 28-day oral administration of silver nanocolloid.
An increasing number of applications of silver nanoparticles in industry, medicine and everyday life means that the risk of exposure of the human organism to their potential harmful influence is growing. This study has sought to assess the effect of 28-day alimentary administration of different concentrations (0.25, 2.5 and 25 ppm) of a commercial silver nanocolloid on the proliferative activit...
متن کاملAppearance of a Fractional Stokes-Einstein Relation in Water and a Structural Interpretation of Its Onset
The Stokes–Einstein relation has long been regarded as one of the hallmarks of transport in liquids. It predicts that the self-diffusion constant D is proportional to (τ/T)−1, where τ is the structural relaxation time and T is the temperature. Here, we present experimental data on water confirming that, below a crossover temperature T× ≈ 290 K, the Stokes– Einstein relation is replaced by a ‘fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Soft matter
دوره 11 27 شماره
صفحات -
تاریخ انتشار 2015